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Abstract. We generalize the statistical mechanical theory of vulcanization to the case of
D-dimensional polymerized manifolds. Starting from a continuum model of self-avoiding
manifolds, we study the effects of introducing random crosslinks between monomers on (in
general) different manifolds. As for the case of linear polymers, one observes a continuous
phase transition from a fluid to an amorphous solid state, characterized by a finite fraction of
localized monomers. We compute this fraction, as well as the typical localization length near
the transition.

1. Introduction

A melt or solution of linear macromolecules undergoes a thermodynamic phase transition
from a fluid state to an amorphous solid state, if a sufficient number of permanent crosslinks
between randomly chosen monomers are formed. This phase transition can be described
within the framework of equilibrium statistical mechanics and, in particular, with methods
that have been developed for random systems having quenched disorder [1, 2]. Recently, a
statistical mechanical theory of the equilibrium phase transition has been presented [3–5]. It
is the purpose of this paper to extend the analysis to the case ofD-dimensional polymerized
manifolds. We show that there is also, in general, a vulcanization transition forD-
dimensional manifolds, if a sufficient density of permanent random crosslinks is introduced.
Within mean-field theory, the critical behaviour is independent of the dimensionD of the
manifold. In particular, the gel fraction and the localization length (measured in units of
the radius of gyration) are universal.

Polymerized membranes (i.e. manifolds withD = 2) have attracted a lot of theoretical
interest [6], since they were first introduced by Kantoret al [7]. A variety of potential
experimental realizations have been investigated:
• the spectrin network of red blood cells [8];
• the two-dimensional carbon networks in graphite oxide [9, 10];
• two-dimensional B2O3 glasses that have been nucleated under appropriate conditions

[11];
• superstructures generated by the chemical crosslinking of macromolecules [12].

Scattering experiments on graphite oxide and spectrin networks have been interpreted as
evidence for crumpled states. However the experimentally-observed directionally-averaged
structure function is also compatible with flat and rough membranes, as discussed by
Abraham and Goulian [13].
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Extensive Monte Carlo simulations have been performed in order to understand the
phase structure of polymerized membranes, and to resolve the question of a crumpling
transition. Most simulations for two-dimensional tethered membranes, with excluded-
volume interactions only, find no crumpled phase in three space dimensions [14–18]. There
have also been studies of collections of manifolds to investigate the effects of screening
[19, 20]. We are not aware of studies—experimental or theoretical—of networks ofD-
dimensional manifolds.

2. Model of crosslinked manifolds

2.1. Hamiltonian for a polymerized membrane

A polymerized membrane is characterized by fixed connectivity of neighbouring monomers.
Nearest neighbours are, for example, connected by a covalent bond. The connectivity can
be modelled by a nearest-neighbour interaction of the form

Hint =
∑
〈σ,σ ′〉

V (R(σ )−R(σ ′)) (1)

where the summation runs over all nearest-neighbour pairs on the membrane. The position
of a monomer on the membrane is characterized by a two-dimensional internal cartesian
coordinateσ = (σ1, σ2) ∈ S, whereS denotes a set of indices inR2. The position of the
monomer in thed-dimensional embedding spaceRd is specified by the external coordinate
R(σ ).

If no other interactions are considered then the model is called a phantom model.
All interactions between monomers that are widely separated on the membrane have been
ignored and, hence, nothing prevents the membrane from passing through itself. A tethered
membrane can be modelled byV (r) = 0 for a1 < r < a2, and is infinite otherwise. If one
is interested in length scales much larger than the typical distanceb between monomers,
a1 < b < a2, then one commonly replaces the potential by a harmonic one:

βHint = d

2b2

∑
〈σ,σ ′〉

∣∣R(σ )−R(σ ′)∣∣2 . (2)

(For a discussion see [7].)
It is well known that excluded-volume interactions are much more important for

membranes (i.e.D = 2 manifolds) ind = 3 than for linear polymers (i.e.D = 1 manifolds).
These interactions act between pairs of monomers that are close inRd but arbitrarily far
apart on the membrane, and can be modelled, following Edwards [21], by using

βH0 = d

2b2

∑
〈σ,σ ′〉

∣∣R(σ )−R(σ ′)∣∣2+ 1

2

∑
σ,σ ′

|σ−σ ′|>b

v0 δ
(d)(R(σ )−R(σ ′)) (3)

wherev0 characterizes the strength of the (repulsive) excluded-volume interaction. It will
be more convenient to use a continuum description, having in mind a large membrane
consisting of many monomers, and focusing on length scales� b. Furthermore, we shall
consider the general case ofD-dimensional manifolds of ‘area’S. We adopt units of energy
such thatβ−1 ≡ kBT = 1, and introduce dimensionless internal coordinatess = σ/L and
external coordinatesc = (L2−DbD/d)−1/2R, with L ≡ S1/D. In terms of these coordinates
the model Hamiltonian for a single membrane is expressed as

H0({c(s)}) = 1

2

∫
dDs

D∑
a=1

d∑
ν=1

(
∂cν

∂sa

)2

+ λ
2

2

∫
dDs

∫
dDs ′ δ(d)(c(s)− c(s ′)). (4)
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The above Hamiltonian has been discussed extensively in the literature. In our approach,
H0 specifies the statistical properties of the elements that are then used to build up a network,
i.e. the building blocks. In the following section we shall discuss the statistical mechanics of
an ensemble of building blocks, and the construction of a network by pointwise crosslinking
of randomly chosen pairs of monomers.

2.2. Networks of polymerized membranes

The degrees of freedom of a system ofN membranes (or, in general,D-dimensional
manifolds) are denoted by{ci (s)} with i = 1, . . . , N and are confined to a large hypercube
of volumeV . The system is characterized by the Hamiltonian

H =
N∑
i=1

H0({ci (s)})+ γ
2

2

N∑
i,j=1

∫
dDs dDs ′ δ(d)(ci (s)− cj (s ′)). (5)

The first term is just the sum of one-membrane Hamiltonians and the second term accounts
for excluded-volume interactions between monomers on different membranes. These
are characterized byγ 2, which can in principle be different from the intramanifolds
interactions†. We take the thermodynamic limit such thatN → ∞ and V → ∞ with
n0 = N/V fixed. Alternatively one may consider one extensive manifold, as discussed in
appendix A.

Crosslinks are introduced into the system by randomly choosing pairs of monomers,
and constraining these pairs to occupy common spatial locations. IfM pairs (monomerse
on manifoldie and monomers ′e on manifoldi ′e, with e = 1, . . . ,M) have been chosen, the
configurations of the system must respect theM random constraints

cie (se) = ci ′e (s ′e) (for e = 1, . . . ,M). (6)

The partition function of the crosslinked system, relative to that of the uncrosslinked system,
is given by

Z({ie, i ′e, se, s ′e}) =
〈 M∏
e=1

δ(d)(cie (se)− ci ′e (s ′e))
〉
H

. (7)

Here, the expectation value is taken with respect to the statistical weight exp(−H).
Once a crosslink is formed, it is not allowed to break up and reconnect, but instead

is assumed to be permanent. Hence, the indices{ie, i ′e, se, s ′e}, which specify a particular
realization of the crosslinks, are quenched random variables. We only consider crosslinking
processes in which crosslinks form rapidly, compared to the characteristic diffusion time of
the building blocks, i.e. crosslinking is essentially instantaneous. Monomers that are nearby
at the instant of crosslinking are connected with a certain probability. The statistics of such
a process can be described by the Deam–Edwards form [1],

P({ie, i ′e, se, s ′e}) ∝
〈 M∏
e=1

δ(d)(cie (se)− ci ′e (s ′e))
〉
H

(8)

of the probability distributionP({ie, i ′e, se, s ′e}) of finding a particular realization of the
crosslinks, in which monomerse on manifold ie is linked to monomers ′e on manifold i ′e

† Strictly speaking, one should only sum overi 6= j in (5). This is equivalent to unrestricted summation, ifλ2

is replaced byλ2 − γ 2. Since none of our results depends on the particular value ofλ2, we find it convenient to
include the termi = j from the start.
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(for e = 1, . . . ,M). For technical reasons it is also convenient to allow the number of
crosslinks to fluctuate, and take

PM = 1

Z1

1

M!

(
µ2V

2N

)M 〈 M∏
e=1

δ(d)(cie (se)− ci ′e (s ′e))
〉
H

. (9)

Here,Z1 ensures the proper normalization ofPM , and the mean number of crosslinks [M]
is controlled byµ2. As shown in appendix B, [M] = αµ2N , where the proportionality
constantα = O(1). Its precise value depends on the strength of the monomer–monomer
interaction.

3. Calculations and results

To average lnZ over the disorder with the crosslink distributionPM we use the replica
technique. The average free energy per manifoldf is given by limn→0 fn with −Nnfn =
[Zn − 1]. Averaging over the quenched disorder with the distributionPM is denoted by
[· · ·]. Given the distribution of the quenched degrees of freedomPM , we adopt the strategy
of simultaneously computing the partition function and the distribution of disorderPM .
This can be achieved by introducing one additional replica (for details see [5]), so that the
average free energy is given by

−Nnfn = Zn+1− Z1

Z1
. (10)

For integern the disorder average can be explicitly performed, yielding

Zn+1 =
〈

exp

(
µ2V

2N

N∑
i,j=1

∫
dDs dDs ′

n∏
α=0

δ(d)(cαi (s)− cαj (s ′))
)〉n+1

H

. (11)

Here, the angular brackets〈· · ·〉n+1
H denote averaging with the(n + 1)-fold replicated

Hamiltonian (5). It is convenient to simplify the notation by introducing hatted vectors
for (n+ 1)-fold replicated vectors, for example,ĉ ≡ (c0, c1, . . . , cn), and to use a Fourier
representation for theδ-function in (11):

Zn+1 =
〈

exp

(
µ2N

2V n
∑
k̂

∣∣∣∣ 1

N

N∑
i=1

∫
dDs eik̂·ĉi (s)

∣∣∣∣2)〉n+1

H

. (12)

We aim at the decoupling of the membranes from one another, which interact due to
crosslinks and the excluded-volume interaction inH . In order to achieve such a decoupling
we first rewriteZn+1 in such a way as to explicitly display all intermembrane interactions:
Zn+1 = ψ(µ2)/ψ(0), with

ψ(µ2) =
〈

exp

(
− γ

2

2
n0N

n∑
α=0

∑
k

∣∣∣∣ 1

N

N∑
i=1

∫
dDs eik·cαi (s)

∣∣∣∣2)

× exp

(
µ2N

2V n
∑
k̂

∣∣∣∣ 1

N

N∑
i=1

∫
dDs eik̂·ĉi (s)

∣∣∣∣2)〉n+1

H0

. (13)

Here, the average is taken with respect to the(n + 1)-fold replicated Hamiltonian for
one manifold, i.e. with

∑n
α=0

∑N
i=1H0

({cαi }). All intermembrane interactions can now be
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decoupled with the help of Gaussian transformations:

ψ(µ2) =
∫
D�Dρ exp

(
− µ

2N

2V n
∑
k̂

|�(k̂)|2− γ̃
2n0

2
N

n∑
α=0

∑
k

′|ραk |2−
1

2
nNγ̃ 2n0

+N ln

〈
exp

(
iγ̃ 2n0

n∑
α=0

∑
k

′
Reραk

∫
dDs e−ik·cα(s)

)

× exp

(
µ2

V n

∑
k̂

Re�(k̂)
∫

dDs e−ik̂·ĉ(s)

)〉n+1

H0

)
(14)

and

ψ(0) =
∫
Dρ exp

(
− γ

2

2
Nnn0− γ

2

2
Nn0

n∑
α=0

∑
k

′
|ραk |2

+N ln

〈
exp

(
iγ 2n0

n∑
α=0

∑
k

′
Reραk

∫
dDs e−ik·cα(s)

)〉n+1

H0

)
. (15)

Here, γ̃ 2 ≡ γ 2 − (µ2/V n)n0 denotes the effective strength of the excluded-volume
interaction,

∑′
k refers to the summation overk (excluding k = 0), and

∑
k̂ refers to

the summation over̂k vectors with at least two components different from zero. Functional
integration over the fields�(k̂) andραk is denoted byD� andDρ. The expectation value
of the fieldραk ,

〈ραk 〉 =
1

N

N∑
i=1

∫
dDs [〈exp(ik · cα(s))〉] (16)

is simply the average density (assuming a replica symmetric state). The expectation value
of the field�(k̂)

〈�(k̂)〉 = 1

N

N∑
i=1

∫
dDs [〈exp(ik̂ · ĉ(s))〉] (17)

is the straightforward generalization of the order parameter for vulcanization toD-
dimensional manifolds [5]. In the fluid phase, a flexible manifold can wander throughout
the container, hence there are no static density fluctuations:〈eik·ci (s)〉 = 0 and〈�(k̂)〉 = 0.
Once an infinite network is built up, a finite fraction of manifolds are localized around
fixed random positions, implying non-zero static density fluctuations〈eik·ci (s)〉 6= 0. The
amorphous solid preserves macroscopic translational invariance. Hence, this state is
characterized by vanishing macroscopic density fluctuations, i.e.〈ραk 〉 = 0, whereas higher
moments of the local static density are non-zero, indicating that a finite fraction of monomers
are localized. For example, the second moment of the static density fluctuations is the
analogue of the Edwards–Anderson order parameter for spin glasses. It is given by

〈�(0,k,−k, 0 . . . ,0)〉 = 1

N

N∑
i=1

∫
dDs [〈exp(ik · c(s))〉〈exp(−ik · c(s))〉] (18)

whereas〈�(k̂)〉 with more than two components ofk̂ non-zero yields higher moments of
the static density fluctuations. In general, we expect that〈�(k̂)〉 6= 0 in the amorphous solid
state, provided all wavenumbers add up to zero,

∑n
α=0k

α = 0, as required by macroscopic
translation invariance.
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The representation of the average free energy in terms of the fields�(k̂) and ραk is
exact. So far, the formal development is very similar to the case of linear polymers, which
has been explained in detail in [5]. A field theoretic formulation of crosslinked manifolds
can be derived from (14) and (15). The bare vertices of the resulting Ginzburg–Landau–
Wilson free energy would be correlation functions of the uncrosslinked manifold system,
which differ considerably from the polymer case. Here we shall only discuss the mean-field
approximation, obtained by saddle-point integration of the functional integral. As it turns
out, the dimensionD of the manifold only features via the elementary length scale, and
leaves the critical behaviour unaltered from the case of polymers.

Instead of solving the full saddle-point equation we use a simplified ansatz, and invoke a
variational principle for the free energy at the saddle-point level. We are primarily interested
in non-crystalline networks, and therefore choose the parameters of the Hamiltonian of the
uncrosslinked system such that no instability to crystalline or collapsed states occurs. This
is equivalent to choosing the parameterγ 2 > µ2(V/N)V n, and implies for the saddle-point
solution ρ̄αk=0 for all k. In the amorphous solid state we expect a non-zero fraction of
monomers, denoted byq, to be localized at random positions and exhibit fluctuations over
a finite length scaleξ . In the simplest ansatz

�̄(k̂) = δ∑n
α=0 k

α,0q exp

(
− ξ

2

2

n∑
α=0

|kα|2
)

(19)

these fluctuations are modelled by Gaussian functions parametrized by a characteristic
localization lengthξ . This Ansatz implies thatψ(0) = 1= Z1 and

−Nnfn = −µ
2N

2V n
∑
k̂

|�̄(k̂)|2+N ln

〈
exp

(
µ2

V n
Re
∑
k̂

�̄(k̂)

∫
dDs e−ik̂·ĉ(s)

)〉n+1

H0

. (20)

Next, the ansatz for̄�(k̂) is inserted into (20), and the exponential in the second term
is expanded, resulting in a Landau free energy in terms of�̄(k̂). The coefficients in this
expansion are the correlations of the density, determined by the one-membrane Hamiltonian,
for example

Ck(s, s
′) ≡ 〈exp(ik · (c(s)− c(s ′)))〉H0. (21)

Near to the transition from the amorphous to the liquid state we expect the localization
lengthξ to be much larger than any inherent length scale of a membrane. Given the form
of the expansion offn, we notice that the one-membrane correlations are always multiplied
by e−ξ

2k2/2, thereby restricting the range of wavenumbers tok 6 1/ξ . In that range the
one-membrane correlations are well approximated by

Ck(s, s
′) ≈ exp

(
− k

2

2d
〈(c(s)− c(s ′))2〉H0

)
(22)

so that sufficiently close to the transition only the second moment of(c(s) − c(s ′)) enters
the calculation, even though we consider in generalnon-Gaussianmanifolds.

These expectations are born out by the explicit calculation off , which yields

f = f (1) + f (2) + f (3) (23a)

f (1) =
(
µ2q2

2
− g̃(µ2q)

)
lnV (23b)

f (2) = −d
2

(
µ2q2

2
− g̃(µ2q)

)
ln ξ2+ g̃(µ2q)

R2
G

2ξ2
+O(ξ−4) (23c)
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where f (3) contains all terms that only depend onq and are intensive. (See [5]
for a discussion of non-intensive terms arising owing to the neglect of the issue of
distinguishability.) Here,̃g(x) ≡ e−x − (1− x), and the radius of gyrationRG has been
defined for a generalD-dimensional manifold via

R2
G ≡

1

2

∫
dDs dDs ′

〈
(c(s)− c(s ′))2〉

H0
. (24)

As in section 6C of [5] we regardf (1) as dominant and make it stationary with respect to
the gel fractionq. This leads to the equation

1− q = e−µ
2q (25)

which is independentof the dimensionD of the manifold. At first sight this result may be
surprising. However, a non-zero gel fraction indicates the appearance of an infinite network,
which is solely a question of geometry, and should not depend on the building blocks of
the network.

As discussed in detail in [5], (25) always has the solutionq = 0, corresponding to the
liquid state. Forµ2 > µ2

c = 1 an additional root appears, which emerges continuously from
q = 0: for

∣∣µ2− 1
∣∣� 1 we have

q ' 2(µ2− 1)β (26)

with β = 1, in agreement with mean-field percolation. This solution describes the fraction
of monomers that are localized in the amorphous solid state. To obtain the localization
length we demand thatf (2) be stationary with respect to variations ofξ2. This leads to

1

ξ2
= µ2− 1

3R2
G

d +O((µ2− 1)2) (27)

i.e. the length over which particles are localized in the solid phase diverges at the
vulcanization transition. In particular, sufficiently near to the critical point this length far
exceeds the linear dimension of the objects being connected. Therefore the characteristics of
these objects feature only to the extent that they determine the semi-microscopic length scale
RG, which depends onD, as will be discussed in the next section. The critical behaviour,
such as the exponent of the localization length, is not explicitly dependent on the dimension
D of the manifold.

To summarize our results so far: we observe a sharp phase transition from a fluid phase
to a localized state with macroscopic translational invariance. The critical singularities are
independent of the dimensionD of the manifold. The latter only determines the semi-
microscopic length, which sets the scale forξ2.

4. Statistics of one membrane

The simplest model for a polymerized membrane is the Gaussian model, in which excluded-
volume interactions are ignored, i.e.λ = 0 in (4). For a GaussianD-dimensional
manifold one can easily calculate the generating function, from which all correlations follow
by differentiation. We assume stress-free boundary conditions, i.e. the outward normal
derivative ofc vanishes on the boundary,∂c/∂n = 0 on ∂S. The generating function can
be expressed in terms of the eigenvaluesλρ and eigenfunctionsuρ of the negative Laplacian
operator,−4uρ = λρuρ , in the following way〈

exp

(
i
∑
α

pα · c(sα)
)〉

Gauss

= δ0,
∑

α pα
exp

(
− 1

2

∑
α,β

pα · pβG(sα, sβ)
)

(28a)
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with

G(sα, sβ) =
∑
ρ

(λρ 6=0)

1

λρ
u∗ρ(sα) uρ(sβ). (28b)

The average is taken with the Gaussian one-membrane Hamiltonian, i.e. withH0 from (4)
with λ2 = 0. For a linear polymer (i.e.D = 1), the eigenfunctions and eigenvalues are
given by

un(s) ∝ cos(πsn) (n = 0, 1, 2, . . .) (29a)

λn = π2n2. (29b)

We make use of the result
∑∞

n=1 n
−2 = π2/6 to obtain the well known result for the radius

of gyration: R2
G = Lb/6 and, hence,

ξ2 = 1

µ2− 1

bL

2d
(30)

where physical units have been restored. For a Gaussian membrane (i.e.D = 2) the
eigenfunctions and eigenvalues depend on the shape of the membrane. Easily solvable are
shapes that allow for a separation of coordinates, such as a disc or a square. In the latter,
case one obtains

unm(s) ∝ cos(πs1n) cos(πs2m) (n,m = 0, 1, 2, . . .) (31a)

λnm = π2(n2+m2). (31b)

To perform the summation over inverse eigenvalues one has to introduce a short distance
cutoff. We require that the zeros of the eigenfunctions be separated by a distance larger
than the persistence lengthb. This requirement truncates the summation for largen andm,
and yieldsRG = (b/π)2 ln(L/b), and hence

ξ2 = 3

π2

1

µ2− 1

b2

d
ln(L/b). (32)

In a similar way one can treat the general case of aD-dimensional hypercube. However,
as noted previously, these results are not meaningful forD > 2. If one makes the ansatz

RG ∝ Lν (33)

then one can easily derive the following bounds onν, viz (D/d) 6 ν 6 1 [22]. The
upper bound corresponds to a flat manifold, and the lower bound to a dense packing of
the monomers. A Gaussian or phantom linear polymer does satisfy the bounds ford > 2,
whereas a Gaussian membrane violates the bounds in all finite space dimensionsd. It is
intuitively clear that the process of folding back and passing through itself is much more
likely for a membrane than for a linear polymer ind = 3. Unfortunately, the radius of
gyration of a membrane in a good solvent is not known analytically. If the manifold were
crumpled, a generalization of Flory theory [7] would predict a radius of gyration that scales
asRG ∝ L(D+2)/(d+2), i.e. ν ∝ 4

5 for d = 3 andD = 2, compatible with the lower bound.
Computer simulations [14–18] indicate that membranes with excluded-volume interactions
are flat ind = 3, implyingRG ∝ L.

One may also consider a different one-membrane Hamiltonian, including, for example,
a bending energy. We stress that our results for the critical behaviour are independent of
the particular model used. The one-membrane Hamiltonian determines only the ‘internal’
length scale of the problem, i.e. the radius of gyration.
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Appendix A. A different thermodynamic limit

So far we have discussed a statistical ensemble of manifolds, each manifold being of finite
extent. An alternative way to achieve the thermodynamic limit is to consider a single
manifold, the linear extentL = Kb of which tends to infinity. We want to ensure that the
configurations of the manifold are determined by its own statistical properties and not by
the walls of the container (see [23]). Hence we have to require that the box sizeV 1/d is
larger than the radius of gyration:

V 1/d > RG ∝ Kν. (A1)

This inequality restricts our discussion to dilute or semi-dilute solutions. The latter are
characterized byRdG ∼ V z, i.e. a monomer density

ρmonomer= KD

V
∝ KD−dν. (A2)

In the thermodynamic limit,K → ∞ and V → ∞. For semi-dilute solutions one has
to keepKν/V 1/d fixed, whereas for dilute solutions the above ratio goes to zero in the
thermodynamic limit.

To simplify the discussion, we only consider one-dimensional manifolds, i.e. one linear
polymer of lengthL. The partition function of the crosslinked system is given by

Z({se, s ′e}) =
〈 M∏
e=1

δ(d)(c(se)− c(s ′e))
〉
H0

. (A3)

Crosslink realizations{se, s ′e} are generated by the distribution

PM({se, s ′e}) =
1

Z1

1

M!

(
µ2V

2L

)M 〈 M∏
e=1

δ(d)(c(se)− c(s ′e))
〉
H0

(A4)

whereZ1 guarantees proper normalization ofPM . The analysis of the average free energy is
completely analogous to that given in section 3 and yields, in the saddle-point approximation,

nKfn = µ2L

2V n
∑
k̂

|�̄(k̂)|2− ln

〈
exp

(
µ2L

V n
Re
∑
k̂

�̄(k̂)

∫
ds eik̂·ĉ(s)

)〉n+1

H0

(A5)

with

�̄(k̂) =
∫

dDs [〈eik̂·ĉ(s)〉]. (A6)

Comparison with (20) shows that the free energy per monomer for one long chain is the
same as the free energy per monomer for an ensemble of finite chains, provided we make
the substitutionµ2K → µ2. Hence we can take over the results of section 3:

q ' 2(µ2K − 1) (A7a)
1

ξ2
' 1

3
(µ2K − 1)

d

R2
G

. (A7b)
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The mean number of crosslinks is related toµ2 by [M] = αµ2K with α = O(1) asK →∞,
so that [M] = O(1) crosslinks are sufficient to observe the transition to the amorphous solid
state. This result seems puzzling at first sight, but can be understood intuitively. The first
crosslink that is introduced into the system typically generates a loop of sizeL/2. After
M crosslinks have been formed one typically has loops of sizeL/2M . To achieve a loop
size of orderRG one needsMc ∝ ln(L/RG). WhetherMc is actually ofO(1) or O(lnK)
is difficult to decide. The typical loop size of the critical network is presumably larger than
RG, favouring smaller values ofMc. One may also consider one long polymer as being
constructed by the endlinking ofO(K) small ones, so that already ofO(K) crosslinks
have been introduced into the system. This interpretation is consistent with the results of
section 3.

Appendix B. Average number of crosslinks

In this appendix we derive an approximate relation between the mean number of crosslinks
[M] and the control parameterµ2. Our starting point is the exact expression for [M],

[M] = µ2 d

dµ2
lnZ1 (B1)

in terms of

Z1 =
〈

exp

(
µ2V

2N

∑
i,j

∫
dDs dDs ′δ(d)(ci (s)− cj (s ′))

)〉
H

= φ(µ2)

φ(0)
. (B2)

As in section 3, we decouple interactions between different manifolds by Gaussian
transformations. The numerator is rewritten with help of the Gaussian fieldρk in the
following way

φ(µ2) = Trci (s) e−H exp

(
µ2V

2N

∑
i,j

∫
dDs dDs ′ δ(d)(ci (s)− cj (s ′))

)

= Trci (s) e−H0 exp

(
− γ̃

2N2

2V

∑
k

′
∣∣∣∣ 1

N

∑
i

∫
dDs eik·ci (s)

∣∣∣∣2)
= e−γ̃

2Nn0/2
∫
Dρk exp

(
− γ̃ 2Nn0

∑
k

′
ρkρ−k +N ln4({ρk})

)
(B3)

with

4({ρk}) = Trc(s) e−H0 exp

(
i2γ̃ 2n0

∑
k>0

Re

(
ρk

∫
dDs eik·c(s)

))
. (B4)

The functional integral over{ρk} cannot be done exactly. We evaluate it approximately by
expanding ln4 up to quadratic order in the fields{ρk}:

ln4({ρk}) ≈ −(γ̃ 2n0)
2
∑
k

′
ρkρ−kS(k2) (B5)

whereS(k2) denotes the static structure factor, given by

S(k2) =
∫

dDs dDs ′〈eik·(c(s)−c(s ′))〉H0. (B6)

The resulting Gaussian integral over{ρk} yields

φ(µ2) ≈ e(γ̃
2/2)Nn0

(∏
k>0

(1+ 2γ̃ 2n0S(k
2))

)−1

(B7)
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and hence

lnZ1 ≈ µ2

2
N + V

2(2π)d

∫
ddk ln

1+ 2γ 2n0S(k
2)

1+ 2γ̃ 2n0S(k2)
. (B8)

The integral over wavenumbers is ultraviolet divergent, for example, forD = 1, S(k2)

decays likek−2 for large k. This divergence is an artifact of our continuum model and
can be taken care of by going back to the microscopic basis of the model. The excluded-
volume interactions as well as the constraints owing to the crosslinks cannot be modelled
by δ-functions, if one is interested in length scales which are comparable to the persistence
lengthb. In a more realistic model theδ-functions are replaced by a potentialU(x), which
can, for example, be taken as a Gaussian of widthb. One then obtains

[M]

N
= µ2

2
+ 1

2n0

∫
ddk

(2π)d
ln

1+ 2γ 2n0U(k)S(k
2)

1+ 2γ̃ 2n0U(k)S(k2)
(B9)

or, for α,

α = [M]

µ2N
= 1

2
+ 1

n0

∫
ddk

(2π)d
U(k)S(k2)+O(µ2). (B10)
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